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CLXXXV. -A General (Exact) Equution to the Potentio- 
metric-titration Curve. 
By BERNARD CAVANAGH. 

Section 1. 
IN a previous paper (Part 11; J., 1928, 855) an exact equation was 
obtained, on thermodynamic grounds, representing the whole 
potentiometric-titration curve in all cases where (a)  the analytical 
reaction consists in the combination of two ions of like valency to 
form a substance of constant activity such as a precipitate, and 
( b )  the indicator electrode behaves as a " soluble electrode " towards 
either of these ions. Essentially of the tractable form, 

X = s i n h U  . . . . . . (1) 
(where U and X represent distance from the equivalence point in 
terms of potential and of quantity of reagent, respectively), this 
equation was used in developing certain highly refined methods of 
titration. It will now be shown that both the equation and the 
methods arising out of it can be generalised. A system involving 
both analytical and electrode reactions of the most general type 
yields, under equilibrium conditions, a titration curve exactly 
represented by an equation of the form 

x=sinhu . . . . . (2) 
.Is 

where sinh U = &(eaU - e-bu ) .  . . . (3)" 
4 

a - B U  
* This equation could be written in the form sinh U = e z  sinh q u ,  

and similarly for other hyperbolic functions of U ,  but the formulz~ would 
be, not only cumbersome, but less direct in their physicochemical significance. 

aB 
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and a and are two simple numbers characteristic of the system 
(see Section 3, and Fig. 1). 

Between the function defined in (3) and the corresponding cosine 
and other functions (see Section 4) many of the inter-relations of 
the ordinary hyperbolic functions hold good (for fixed values of 
cc and P), while others assume a more general form. These relations 
facilitate the derivation of methods of refined titration essentially 
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means of determining equivalence-point potentials and reaction 
constants (compare Part 11, p. 870). 

The rigorous deduction of the general titration-curve equation 
appears to be especially useful in providing a sound basis for the 
quantitative study of all the various analytical and electrode 
reactions that are now available or may yet be discovered. In  so 
far as such study is to be anything more than mere empiricism, it 
must rest upon the assumption and the attempted realisation of 
equilibrium conditions, and this is the only assumption on which 
the following deduction is based. 

Section 2. Deduction of the Equation. 
This deduction may be effected concisely and yet with strict 

generality by adopting the device of writing the chemical and 
thermodynamic equations in an algebraic manner, such that no 
formal distinction need be made between products of the reactions 
and reactants other than the two principal reactants. Four abstract 
or typical molecular symbols will then suffice to represent all 
possibilities, whereas otherwise eight at  least would be necessary. 
The procedure at  this stage may be illustrated by a concrete case. 

The reduction of iodate ion by (aqueous) sulphur dioxide in 
strongly acid solution has recently been studied potentiometrically 
(Hendrixson, J .  Arner. Chem. SOC., 1925, 47, 1319; the author 
actually used a solution of sodium sulphite, but in effect this was 
the same as adding aqueous sulphur dioxide, since a large excess of 
acid was present), and shown to proceed in two clearly separated 
stages. Considering only the first of these, the analytical reaction 
is 

210,' + 580, + 4H20 = I, + 5S0," + 8H' . 
Iodate ion and sulphur dioxide are the two principal reactants; 
the latter, being the added substance, may conveniently be called 
the " reagent," and the former the " titrated substance." In  
order to avoid needless repetition, the word " substance " will be 
taken to include ionic or molecular species throughout this paper, 
and similarly the expression " g.-mol." will cover '' g.-ion." 

Before the first addition of reagent, the only electrode reaction is 

. (4) 

100+2IO,'+ 12H '=I ,+6H20  . . . (5) 

(where the symbol 0 represents one faraday of negative electricity), 
but when once the titration has commenced there is the alternative 
electrode reaction 

- 100 + 580, + 10H20 = 5S0," + 20H' . . (6) 
obtained by subtracting (5)  from (4). These equations must now 
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be re-written in the algebraic manner convenient for the present 
purpose by transferring the symbols of the " subsidiary reactants," 
i.e., all save the two principal reactants, to the right-hand sides with 
change of sign, thus : 

100 + 210,' = 1, - 12H' + 6H20 . . . (7) 
- 100 + 5SO2 = 5S0," + 20H' - 10H2O . . . (8) 

210.3' + 5SO2 = I2 + 5S0," + 8H' - 4H2O . . (9) 

and the corresponding thermodynamic equations (for equilibrium) 
can be written logarithmically in an entirely parallel manner, the 
algebraic signs being retained. 

We now revert to the general treatment. Representing the mole- 
cular or ionic symbols (in the abstract) by capital letters, and taking 
A as the titrated substance, and B as the reagent, we express the 
alternative electrode reactions quite generally by the equations 

- + v ~ + a A = z p P  . . . . ' (10) 
t v ~ + b B = X q Q  . . . . . (11) 

the small letters representing numerical coefficients, of which those 
on the right, typified by p and q, may be either positive or negative 
as in equations (7) and (8). From the latter it is also seen that the 
symbols represented by P, Q, etc., are not necessarily all different. 
The equation for the analytical reaction is obtained from (10) and 
(1 1) by addition, giving 

and the three thermodynamic equations corresponding to (lo), 
(l l) ,  (12), respectively, are then written in terms of the equivalent 
concentrations CA, CB, etc., the activity coefficients yA, yB, etc., and 
the measured potential E. It is convenient to adopt the convention 
that the direction in which E changes during titration i s  taken as the 
negative direction, thus avoiding alternative signs, and we have 

vF/RT.  (Eo - E )  + a log C,yA = 2 p  log C,y, . . . (13) 

a A +  bB= XpP+ CqQ . . . . (12) 

- v F / R T .  (E'o - E )  + b log CByB = CQ log CQyQ . . . (14) 
- log K + a log C A y A  + b log CByB = 

in which logarithms (as throughout this paper) are to the base e ; P, 
R, and T have their usual significance; and the three constants, 
Eo, 

x p  log CPyP + cq log CQyQ (15) 

and K ,  are connected by the relation 

logK = vF/RT.(E'~- Eo) . . . . (16) 
These equations express the assumption of equilibrium conditions. 

Now suppose (as in Part I, J., 1928, 843, and Part 11, Zoc. cit.) that 
a t  any given stage of the titration, M C.C. of the reagent solution are 
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still required in order to reach the exact equivalence point. Thus 
M may be positive or negative, but in any case, to know N is, from 
the experimental point of view, to  know the result of the titration. 
If n is the norma’lity of the reagent solution (which may or may not 
be known) then the excess of the titrated substance a t  this stage is 
evidently M n  mg.-equivs.* 

I n  order to show how adsorption by precipitates (if any) would 
affect the titration curve, a coefficient, 8 A ,  is now introduced, 
representing the ratio of the amount of A present in solution ( L e . ,  
not adsorbed) to the total amount present (compare Part I, p. 848) ; 
a similar coefficient, 8B,  relates to B. 

Then if V C.C. is the volume of the solution a t  this stage, the total 
amount (mg.-equivs.) of A in the vessel is V c A / 8 A ,  and similarly 
that of B is VcB/8B, and since the excess of A is N n  mg.-equivs., 

Mn = v c A / 8 . %  - VCB/~B . . . (17) 
The remaining steps, by which CA and CB are eliminated and the 

result is reduced to  a tractable form, will be plain if three constants 
a, p, zo, a,nd two other quantities, H and G (not in general constant, 
but independent of CA and CB), are first defined by the equations 

aa = bp = v 

(a + p)Eo = aE0 + pE‘, . . . . (18) 

(19) P 
(g + PIG = log ( ~ B ~ B / ~ A o A )  + C; log cpyp - 2; log cQy, + 

(a + b )  log (nH/2  v) = log K - log y A 8 ,  - b log y B 8 B  $- 
c~logcl’yP + CqlogcQyQ * - * * (20) 

Then, from equations (13), (14), (15), and (17), the general titration- 
curve equation connecting At and E is obtained in the form 

M / H  = sinh [ (F/RT)(E - Eo) + G ]  . . . (21) 
afl 

and, since this is identical with equation (2), 

x === M / H  . . . . . . . . . (22) 
U = ( F / R T ) . ( E ’ - Z o ) +  G .  . . . (23) 

From equations (19) and (20), G and H are seen to depend on the 
concentrations of the products and subsidiary reactants (if any), 
the adsorption and activity coefficients, and (in the case of H )  the 
volume of the solution. Their complexity and probable variation 
might appear, a t  first sight, to render impracticable the general 

* Ordinary usages have been adhered to  as far as possible, but it is plain 
that the reagent might be measured in other units-in g. of solution, or of 
the pure substance B, or of some compound of B, etc.-so long as n. is defined 
as the number of mg.-equivs. of B per unit. 
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application of the equation and of the methods of titration based 
upon it, but this is not the case. In  using these methods, variation 
in H and G can be accurately allowed for by applying a predeter- 
mined additive correction to the measured potentials (see Section 7),  
after which the procedure is exactly as if H and G were strictly 
constant during a titration. 

The volume H C.C. is, as it were, a (' natural " unit-quantity of 
the reagent solution, in terms of which X represents distance from 
the equivalence point. Since U vanishes with X (i.e.) at the 
equivalence point), 

Ee= RTGJF . . - (24) 
U =  F ( E - E e ) / R T  + ( G -  GJ . (25) 

where E, and Ge are the equivalence-point values of E and G. But 
the difference (G - Ge) is either negligible or is made so by the 
application of the corrections just mentioned, so that essentially U 
represents distance from the equivalence point in terms of the unit 
R T / F  (= 25.00 millivolts a t  17.0"). 

Section 3. Characteristic Forms of the Titration Curve. 
The Electrode-valencies.-Some examples of the curves represented 

by the general equation (2), are exhibited in Fig. 1. The inter- 
section of the axes represents the point of exact equivalence, and the 
positive direction of X is towards the left, so that the progressive 
addition of the reagent is represented by moving from left to right, 
as is customary in titration diagrams. 

The forms of the curves will be better appreciated when considered 
in conjunction with the corresponding curves (Fig. 2), in which 
dU/dX is plotted against X .  It is noticeable that the maxima in 
Fig. 3, and correspondingly the points of inflexion in Fig. 1, do not 
occur a t  the equivalence point except in the symmetrical cases where 
a = p. Actually (see Section 4) they occur where ( a  + p)U = 2 log 
( p / a ) .  Any one of the curves in Fig. 1, when rotated about the 
origin through 180", coincides with the curve obtained by inter- 
changing a and @. 

The parameters a and p, which characterise the curves, are by 
definition equal to the ratios v / a  and v/b respectively, and from 
(13) and (14) it is seen that 1 g.-mol. of the titrated substance 
" reacts " with v/a faradays of electricity in one of the electrode 
reactions, while in the other, 1 g.-mol. of the reagent reacts with 
v/b faradays. 

For instance, in st precipitation reaction, with an indicator 
electrode behaving as a " soluble " electrode towards either of the 
precipitated ions, a and @ would be the valencies of the two ions. 
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More generally, therefore, the term '' electrode-valency " may be 
used to  signify the number of faradays of electricity reacting with 
1 g.-mol. of a given substance in a particular electrode-reaction. 
Thus tc and p are the electrode-valencies of A and B in this system. 

In  many cases, though not all, the electrode-valency is simply the 
ratio of the molecular weight to the equivalent weight ordinarily 
used in volumetric analysis. For instance, it is 5 for the permangan- 
ate ion and 1 for the ferrous ion, with a platinum electrode, the 
electrode reactions being 

5 0  + MnO,' = Mn" + 4H,O - 8H') . . ( 2 6 ~ )  
- 5 0  + 5Fe" = 5Fe"' 

Similarly, in the iodate titration (p. 1429), equations (7) and (8) show 
that the electrode-valencies of the two principal reactants, iodate 
ion and sulphur dioxide, are respectively 5 and 2. On the other hand 
in Greeff's titration of fluoride ion by ferric ion, as applied potentio- 
metrically by Treadwell and Kohl (Helv. Chirn. Actu, 1925, 8, 500), 
the electrode-valency would not be equal to the ratio of the mole- 
cular weight to the ordinarily accepted equivalent weight, for here 
the alternative electrode reactions are 

whence the electrode-valencies of ferric and fluoride ions would be 
1 and 9, respectively. 

Section 4. Some Mathematical Properties of the Curves. 
The curves in Fig. 1 are graphs of the function sinh U for various 

assigned values of the parameters CI and p. If the positive directions 
of both axes of co-ordinates are reversed, the curves then represent 
the complementary function sinh U ,  for 

aB 

Ba 

Correspondingly, there are two complementary cosine functions, 

cosh U = cosh (- U )  = $(eau + e-pv) . . (28) 
aS Ba 

and the other functions are obtained from these according to  the 
usual conventions, e.g., tanh U = sinh U/cosh U ,  and sech U = 
l/cosh U. aB a9 aL3 aB 

If, now, the purely numerical constants, (aSPa) l / (a  + P )  and 
aB 

1 - log (i), are represented by E, and g respectively, the first 
a + P  
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derivative of sinh U (or d X / d U )  can be written in the form 

h cosh ( U  + y), and it is the reciprocal of this, i.e., dUldX or 

h-l sech ( U  + g ) ,  which is plotted against X in Fig. 2. Similarly, 

the first derivative of cosh U is h sinh ( U  + g), and it follows that 

the second derivative of sinh U is h2sinh (U  + 29). Thus each 

curve in Fig. 1 has a point of inflexion where U = - 2g and 
X = - sinh 29. This is the point of maximal slope and sensitivity 

(see Section 9), the maximal value of dU/dX being h-l sech g. The 

following table shows the values of these characteristic constants 
for several types of curve. In  the last column the quantity 5Og is 
tabulated, being the distance of the point of inflexion from the 
equivalence point in millivolts a t  17" (i.e., RT/B'. 29). 

aP 

aP 

aP 

U P  QP 

aP a.8 

Pa 

Iga 

d X  dU 
a. 6.  h. 9.  -Xinfl. (ZD)n,in. (ZT)-x. Ee - Einfl. 
1 1 1  0 0 1 1 0 
2 1 1-26 0.231 0.59, 1-19, 0.838 11-5, 
3 1 1.31, 0.274, 0.77 1-15, 0.86, 13.7, 
5 1 1.308 0.268, 0.82, 1.02, 0.97, 13.4 
6 1 1 ~ 2 9 ~  0.256 0-81, 0.97, 1.02, 12.8 
3 2 2  0 0 2 0.5. 0 
3 2 2.35, 0.081, 0.38, 2.30, 0434  4.0, 
5 2 2.598 0.131 0.709 2.36 0.424 6.5 5 

1 61 0.218, 1.535, 0.81, 0.162, 6.16 76.79 

Interchange of the values of cc and p in any case alters the sign 
of Xinfi., g ,  and of  E, - Eiofl., hut makes no other difference. 

It is noticeable that (ig) min., or h cosh g, always approximates 

in value to  the smaller of the two electrode-valencies. 
Pa 

Section 5. General Application of Method I. 
Equation (2) has two limiting forms, 

X = $eau . . . . . . . (29) 
-X=&-PU . . . . . - (30) 

valid respectively for large positive and large negative values of 
U.  One or other of these will be accurate to  1% as regards X ,  
unless U lies between the limits -+ (log lOO) / (c t  + p); and the 
region defined by these limits, some 230/(a + p) millivolts in extent, 
within which the incompleteness of the analytical reaction exceeds 
1%, may be referred to  as the " equivalence region." Outside 
this region Method I is applicable and the result of the titration 
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can be determined from a single change of the potential E,  without 
knowledge of E,, Eo, G, or H ,  as follows. 

Fully written, equation (29) is equivalent to 

which is therefore valid at all points or stages outside and before the 
equivalence region. Consider two such points, (E ,  M )  and (E’, N ’ ) ,  
separated by E millivolts and m C.C. of reagent solution (conipare 
Part I, Section 4). Suppose that a t  the earlier stage, (E‘, M’),  the 
amount of the (typical) subsidiary substance P in the titrated 
solution is n M ,  mg.-equivs. [all equivalents being reckoned accord- 
ing to the chemical equation (12)], then if the volume of the solution 
is V‘ c.c., 

RT nM’ RT p nM, 
aF E F  n E’ r= Eo + -- log yA8, - C- log v’ r - - (32) 

Now, on the addition of m C.C. of the reagent solution, not only is 
the amount of the titrated substance diminished to nM mg.-equivs., 
but the volume of the solution is increased to V c.c., and also the 
amount of the subsidiary substance, P, is either increased or de- 
creased by mn mg.-equivs., according as this substance is, on the 
whole, a product or a reactant in the analytical reaction ( L e . ,  not 
merely according as p is positive or negative). 

At the later stage, therefore, assuming for the present (see Part I, 
Sections 2 and 7) that change in the adsorption and activity co- 
efficients can be neglected, 

where 
by subtraction, 

= (E’ - E ) ,  M = (M’ - m), and B = (V‘ + m). Then, 

. . (34) 

where 

EE, = R T / F .  log (1 + m / M )  . . . . . . . . (35) 

= B T / F .  log (1 & m/M,) . . . . . . . (37) 
~ E O  == RT/F.  log (1 + m/V’) = - RT/F . log (1 - m/V)  . (36) 

The effect of the change in the amount of A is represented by Em, 

while the effects of the simultaneous changes in the “ subsidiary 
conditions” (the volume of the solution and the amounts of the 
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subsidiary substances) are represented by the remaining terms on 
the right of equation (34). In  this sense c, is the value of the 
measured potential change “ corrected to constant subsidiary 
conditions,” and the correction terms, e,, e,, etc., are to be found 
from the tables provided in Part I (Zoc. ci t . ) .  It is obvious t,hat, as 
indicated in Part I ,  changes in the adsorption and activity coefficients 
(if not negligible, as assumed) could be corrected for in an entirely 
similar manner. The result of the titration then follows from the 
relation 

M = m .f(aem> . . . . . . (38) 

[see Part I, Table I and equations (22) and (as)]. 
In  Part I, the use of the dilution term c, is fully demonstrated, 

a convenient procedure being indicated in Section 12, and a type of 
case being discussed in Section 8, in which this correction is elimin- 
ated owing to the fact that Cp/a is equal to unity. The latter 
section includes an example of a correction of the ep type, P being a 
product of the reaction (ferric or titanic ion). In  this case, on the 
assumption that P is absent at the commencement of the titration, 
M ,  is accurately known, being simply the number of C.C. of reagent 
solution already added before the further addition of the m C.C. 

On the other hand, in many cases P will be a substance present in 
considerable excess, M ,  will be large in comparison with m, and there- 
fore only a rough estimate (if any) of its magnitude will be required 
in order to determine the very small correction, ep. An example of 
this would be hydrogen ion as a subsidiary substance in most 
oxidation-reduction titrations. I n  short, it is plain that in any 
particular case, under suitable conditions, the correction of the 
measured potential changes will readily be reduced to a simple 
routine . 

One special advantage of Method I is that it makes use of less than 
one half or side of the titration curve, being independent of the 
equivalence region as well as of all that part of the curve beyond 
it. This is notably useful in the titration of mixed solutions (e.g., 
a mixture of halides), where the curves corresponding to the suc- 
cessive reactions overlap and truncate one another. Nevertheless, 
i f  the second half of the curve happens to be available, it may be 
utilised in essentially the same way, the full form of equation (30), 
valid here, being 

If ( E ,  M )  and (E”, M”) are the two successive stages, both beyond 
the equivalence region, and separated by E’ millivolts and m’ C.C. 
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of reagent solution, so that E” = ( E  - E‘), M” = ( M  - m’), and 
M is negativk, we find 
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I ’  
& = &  vh - E’V (1 - Cq/b) . . : . . (40) 

where PE’,~ = RT/F . log (1 + m’ /V)  , . . . (41) 
PE’, = RT/F . log ( 1  + TM). m’ . . . 

and therefore - M = m’ . ~ ( P E ’ ~ )  . . . . . . (43) 
No correction term of the cP (or cs) type occurs here, because the 
chemical reaction has ceased and the quantities of the subsidiary 
substances are not changing. 

It has been assumed, so far, that B is the only significant substance 
(apart from the solvent) introduced by means of the reagent solution. 
If, however, the latter contains also appreciable quantities of any 
of the subsidiary substances, or of compounds capable of reacting 
with the latter (for examples, see Section ll), this merely involves 
obvious modifications in the form of the subsidiary-conditions 
correction, for it remains true, in general, that the changes in these 
conditions are proportional to  the quantities of reagent solution 
added. 

In  using Method I, should the stage (E ,  M )  be allowed to  fall 
within the equivalence region, the result of the titration will be too 
high if obtained from the first half of the curve, and too low if from 
the second half. If MaPP. is the erroneous value of M so found, the 
error in the former case is approximately (H/2)1+j3/a/Mtj;.,  and the 
same with a and p interchanged in the latter case. I n  either case, 
an alternative formulation of the error is Mapp. . f [ ( ~  + P)(E - Be)] .  

Thus, approximate knowledge of either H or E, would permit the 
correction of this error if not too large. Such procedure, of course, 
would really constitute a crude form of Method 11. 

Section 6. General Forms of Methods I1 and 111. 
Apart from its special advantages, the absolute precision of Method 

I is higher than that attainable under the most favourable conditions 
by the customary potentiometric methods. Sometimes, however 
(as when dealing with unusually dilute solutions or with an analytical 
reaction of low inherent sensitivity), it may be desirable to seek the 
appreciable increase of precision which is, in general, to be obtained 
by making use of a stage nearer to the point of inflexion than is 
permissible in Method I. Of the two distinct methods of so doing, 
Method I1 makes use of only one half or side of the titration curve, 
but requires some knowledge of the unit H ,  whereas Method I11 
requires no knowledge of H but utilises both halves of the curve. 
Properly applied, either method yields the highest absolute precision 
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obtainable with a given experimental system. Potentiometric 
methods of the “absolute” type (see introductory remarks in 
Part I) should theoretically yield the same maximal precision, but 
in practice this is not realised because the absolute values of the 
measured potential are not nearly so accurately reproducible as 
are the differences or changes on which alone the differential methods 
depend. 

Method 11.-Consider, as in the last section, two successive 
stages (E’, M’) and (E,  M ) ,  separated by E millivolts and rn C.C. of 
reagent solution ; but suppose, now, that the second stage lies within 
the equivalence region, so that the limiting form (31) is not valid 
at  this stage. Applying, instead, the general equation, we may 
write 

M / H = s i n h U  . . . . . . (44) 
aB 

where U is defined by equation (23). 
At the earlier stage the measured potential has the value E’, or 

( E  + E ) ,  but this is, in effect, “ corrected ” to a value ( E  + c,,), 
in the manner to be explained in the following section, whereupon 
both H and G may be treated as constants; hence, using the same 
value of H as in (44), 

( M + m ) / H = s i n . h ( U + u ) .  . . . 
a0  

where u = P / R T . E ~ .  * . * 

Now the following identity can easily be verified, 

sinh (77 + u)  - sinh U = sinh u . cosh (U  + 4)  . sech q5 . 
4 U S  aB 4 4 

. . . . .  1 + f ( P E m >  where 

or, for large values of Em, 

( a  + PI4 = 1% f ( a E m )  

Thus, if equation (48) is written in the form 
sech ( U  + c#) = ( H / m )  sinh u . sech q5 . . 

aR aB 4 
and coupled with equation (44), it is apparent that when m and E 

have been measured and H is known, 121 may be obtained by the 
use of a parallel table of the functions sinh and sech in a manner 

essentially similar to that described in Part I1 (pp. 862, 863). The 
corresponding curves shown in Pigs. 1 and 2 would be a (less accurate) 
substitute for such tables since there is no objection to dividing both 
sides of equation (51) by h. Alternatively, of course, suitable 

aB a0 

30 
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diagrams, after the manner of those shown in Part I1 (Figs. 1 and 
2), could be constructed. 

Method 111.-Introducing a third and later stage (E”, H’’) beyond 
the equivalence region and separated from the second stage by 
E’ millivolts and m’ C.C. of reagent solution, and supposing as before 
that the correction of Section 7 is applied, the measured potential 
(E - E’) being corrected to ( E  - &lnL), then we have 

where 

( M  - m’)/H = sinh(U - u’) , . . (52) 

U’ = F/RT . E ’ ,  . . . * (53) 
aB 

Between the three equations (44), (46), and (53), both H and U can 
be eliminated, and the following exact equation obtained, 

rn cosech u - m‘ cosech u’ 

coth u + coth u’ - cosech u - cosech u’ (54) 
QB Ba M =  

a3 aB 4 Ba 

For large values of u and u’, such as will in practice be used, equation 
(54) can be reduced to the much more convenient approximate form 

Mayp = rn. f(ocEm) - m’ . f(p&’,) . . - (55) 

The error involved in this approximation is of the order of 
magnitude of 

and so is negligible when E, and E’, are both large. 

Equations (29) and (30) of Part I1 are complicated by the terms 
involving V which there represent (approximate) allowance for 
volume change, but on omitting these terms and (in compensation) 
altering E and E’ to E, and E ’ ~ ,  we see that these equations represent 
the special case where a = p = I (see examples in Section 7). 

(m - m’ + ZJfap,) .f(a~m + P’m) * * (56) 

Xection 7. Correction for Variation in H and G .  
It is essential to the increased precision of Methods I1 and 111, 

as compared with Method I, that the stage (E,  M )  should lie within 
the equivalence region, so that equation (33), for example, no longer 
holds good. Nevertheless, the additive corrections (described in 
Section 5) for change in the subsidiary conditions are still essentially 
valid, being equivalent in effect to making H and Q constant, 
with the values they attain at the stuge (E ,  M ) .  For, consider again 
the stage (E’, M’)  which is outside and before the equivalence region, 
so that equation (32) still applies. If, now, without altering the 
amount (nM mg.-equivs.) of the titrated substance, we could alter 
the subsidiary conditions, the volume from V’ to V ,  and the amount 
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of the subsidiary substance P from n M p  to n ( M p  & m) mg.-equivs., 
etc., it is obvious that E' would be altered to 

where E ,  and E~ are defined by equations (36) and (37). NOW, a t  
the stage (E ,  M )  the subsidiary conditions actually are V ,  and, to 
a close approximation, n ( M p  & m), etc., the error of the latter 
approximation (due to the incompleteness of the analytical reaction) 
being only &aHe-Pu, which may be neglected in comparison with 
nM,. In other words, E' (corr.) is the value the potential would 
possess at  the stage (El, M ' )  if the subsidiary conditions (and therefore 
H and G )  had those values which they actually attain at the stage (E, M). 

Since E' = (E + E)? we may write 

E'(coIT.) = ( E  + Em) . * * . (58) 

where em is defined by equation (34). In an exactly similar manner, 
it can be shown that if &Ipn is defined by equations (40) and (41), the 
value which the potential would possess at  the stage (E", N") 
(which is beyond the equivalence region), if IZ and G still had those 
values which they actually attained a t  the stage (E ,  M ) ,  is 

E"(c0rr.) = (E  - E t m )  . . . . . (59) 
In applying these corrections, it is usually convenient to adopt 

the procedure indicated in Part I ,  Section 12, correcting the 
measured potentials to some simple round value of each subsidiary 
condition. It is true that such correction is artificial as applied to 
the stage (E,  M )  because the latter is in the equivalence region, 
and the corrected value of E will not be the value it would attain 
if the subsidiary conditions were altered to the stated round values. 
Nevertheless, if E is corrected in the same manner as E', the differ- 
ence between these corrected values will be &,, as defined above. 
And similarly, if  E is corrected in the same manner as E", i.e., as if 
it were beyond the equivalence region, then the difference between 
the corrected E and E" will be E', as defined above. 

For example, take the simple case of the chloride titrations 
recorded in Part I1 (p. 868). As explained there, the E.M.F. of 
the silver chloride-quinhydrone cell used is doubly affected by di- 
lution when the chloride is in marked excess, and is unaffected by 
dilution when the silver ion is in excess. In this case, therefore? 
equations (34) and (40) assume the special forms 

Em = E - (2RT'/F) a log V/V'  
El, = E' 
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Now if E’ is corrected to some convenient volume, such M 100 c.c., 
it becomes (say) E‘, by addition of a correction of the first form, 

Corr. (a)  = (2RT/F) . log V‘/lOO . . . .  * (60) 
E’, = E’ + (2RTl.F). log V’/lOO . , . (61) . 

and if E is “ corrected ” in the same manner, 

E, = E + (2RT/P) .  log V/lOO 
then, by subtraction, 

On the other hand, El’ is corrected to any convenient volume by 
the addition of a different form of correction, which in this particular 
case is zero, 

E’, - E, = E - (2RTIIr’). log VlV‘ = E,. 

Corr. (b)  = 0 . . . . . .  (62) 
E”b = E” (63) . . . . . .  

and, of course, on “ correcting ” E in the same way and subtracting, 
Eb - E’b = E’ = E l T n .  

For the sake of comparison, two of the titrations recorded in 
Part I1 (Examples 1 and 2, p. 868) are worked out below according 
to  the newer and generally applicable procedure, which will be seen 
to be also much simpler arithmetically. In  order to make the 
examples more generally illustrative, the second form of correction 
[Corr. ( b ) ]  is explicitly stated and applied, although in this special 
case it happens to be zero throughout. 

1000 C.C. of N/lOOO-KCl titrated by N/lOO-AgNO, 
(actually known to be equivalent to 98-5 C.C. of AgNO,, but titrated 
as if only known to be stronger than N/2000);  temp. Z 14.5”. 

The application of Method I11 begins at Stage 11, when 85 C.C. 

of silver nitrate have already been added in applying Method I. 
The latter method having shown that between 13 and 14 C.C. are 
still required to reach equivalence, two successive additions of 
13 C.C. and 12 C.C. respectively are made, and the potentials a t  
Stages I11 and IV measured. The three measured potentials are 
corrected to 17”, and then the first and second are corrected to 
1000 C.C. volume in the manner (a)  [see equations (60) and (Sl)], 
and the second and third to any convenient volume in the manner 
( b )  [see equations (62) and (63)], and E, and E’, are obtained by 
sub traction. 

Example 1. 

-- T‘ Corr. corn. E 
Stage. 1000’ (a). (b) .  (expt.). El?.. E,. E b  . 

I1 1.085 4.0, 172.2 173-6, 177.7 

IV 0 68.3 68.8 68.8 
By subtraction 63.9, 60.3 

In  1.098 4.6, o 118.1 119.1 123.7, 119.1 
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Then, to find M at Stage 111, and hence M,, : 
P?, = 13 cm = 63.9, f(cm) = 0.130, vz .j(Em) ;= 1-69, 
n ~ ‘  = 12 d,,, = 60.3 f(dm) = 0.098, m‘ .f(dm) = 1.18, 

By subtraction, M == 0.51 
and by addition of 98.0, M ,  = 98.51 

Example 2. 100 C.C. of N/lOOO-KCl titrated by N/1000-AgN03 
(actually known to be equivalent to 98.5 C.C. of AgNO,, but titrated 
as if  only known to be stronger than N/4000) ; temp. -, 20”. 

The procedure is essentially as in Example 1, except that two 
stages (I11 and IV) within the equivalence region are used, in turn, 
as the stage (E, M ) ,  so that two results are obtained which are 
then averaged. 

For the purpose of the dilution correction, 100 C.C. is taken as a 
convenient round value of the volume. 

Corr. Corr. E 
Stage. 100’ (a). ( b ) .  (expt.). Eli.. Ea . Eb. 

I1 1.75 28.0 190.4 188.5 216.5 
I11 1-96 33.6, 0 139.8 138.4 172.0, 138-4 
IV  2.00 34.6, 0 120.5 119.3 153.9, 119.3 
V 0 68.4 67.7 67.7 

By subtmct ion(~~:~:  

(i) To find M a t  Stage 111, and hence M ,  : 
n~ = 21 cm = 44.4, j ( c m )  = 0.2034 nz. f ( E n n )  = 4-27, 
wa’ = 29 d,,, = 70.7 ffe’,,,) = 0.0629 T n ’  . f ( d m )  = 1.82, 

By subtraction, M = 2-46 
By adding 964 ,  iW, == 08-45 

(ii) To find M at Stage IV, and hence M ,  : 
?H, == 25 em = 62.5, f(em) = 0.0892, ??a. f(Em) == 2*231 
132’ -2 35 d,,, = 51.6 f ( L r n )  = 0.1454 m‘ . f ( ~ ‘ ~ )  = 3-63, 

By subtraction, M = - 1-40 
By adding 100.0, M ,  = 98.60 

Average of two results in Example 2, M ,  = 98.52,. 

I n  Example 2, the values of Corr. (a)  are seen to be large, but this 
does not mean that it will be liable to introduce appreciable errors 
into the result of the titration, or that the subsidiary condition V 
needs to be very accurately known, for it is only the change in Corr. 
(a)-amounting to 6.65 millivolts in all-which affects the corrected 
difference E,. 

Section 8.  Complete Temperature Correction. 
If, as in the above examples, the measured potentials are 

multiplied by (290/T), this has the effect of multiplying the differ- 
ences E and E’ by the same factor, which makes allowance for the 
fact that the unit (RTIF) is proportional to the absolute temperature. 
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This is all that is required so long as the temperature does not vary 
much during a titration. 

I n  working at temperatures other than ‘‘ room temperature,’’ 
however, considerable fluctuations are not easily avoided under 
practical conditions for titration. Even if a thermostat is used 
it is very troublesome to keep the reagent a t  the same temperature, 
while, if it is not so kept, time is lost after each addition in waiting 
for temperature equilibrium. It is therefore quicker and simpler 
fo make no attempt to  maintain a fixed temperature, but to  read 
the thermometer at each stage and apply a complete temperature 
correction in the following manner. 

For such variation as will occur during a titration both E, and 
E‘, may be assumed to depend linearly on the temperature. This 
means that if the temperature coefficient of the potential E is 
measured at a n y  stage outside the equivalence region, the quantit’y 
( E  - T . dE/dT) will be found to  possess one or other of two values, 
say E,, and E’,,-the former at any stage before the equivalence 
region, the latter a t  any beyond it. Two such measurements will 
therefore suffice to determine these two constants, which are all 
that we require for the purpose of the complete temperature 
correction. 

If T’, T, and IT” are the temperatures of the system at the 
successive stages (E’, M’), (E,  M ) ,  and (E”, N”)  in Method 111, 
it is easily shown that when the potential changes, E and E‘, are 
corrected for the variation of temperature during titration, as well 
as for the value of the unit, RT/F, they become 

~ 1 7 0  == 290(E‘ - Eoo)/T’ - 290(E - E,,)/T . . (64) 
~ ’ 1 7 0  =z= 290(E - E’o,)/IT - 290(E” - E‘oo)/T” . (65) 

so that for differential purposes 290(E’- Eoo)/T‘ and 290(E”- IToo)/ 
T” may be used as temperature-corrected values of E’ and E” 
respectively, while E has two such values-one 290(E - Eoo)/T, 
as if it were before the equivalence region, and the other 
290(E - E’,)/T, as if it were beyond that region. There is here 
an obvious analogy in principle with the procedure discussed in 
the latter part of Section 7. If E~~~ is re-written in the form 

its derivation will be obvious, and it will be seen that the accuracy 
of the correction depends on the assumption that (E’ - Boo) is pro- 
portional to the absolute temperature over some range including 
T and T‘ but not necessarily including 290” Abs. That it does not 
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depend on accurate knowledge of E, will be seen if ~ 1 7 0  is again 
re-written as 

since the coefficient of Eoo is small. Similar considerations apply 
to EfI7'. 

Section 9. Precision of the Generalised Method. 
Writing U' for ( U  + u), and using the abbreviations A sech and 

A tanlz for the positive differences [sech (U + g) - sech (77' + g)] 

and [tanh (U' + g) - tanh (U  + g)] respectively, we may formulate 

the error dM of a titration by Method I1 as follows : 

4 a$' 

aB QP 

H h  A tanh 
- d M  = -- --du + ___ (cosh9)dH . . (68) 

A sech A sech Ba 

where du and dH represent (small) errors in u and H .  Under the 
conditions of highest sensitivity, when U Z  - 2 g and u is large, 
this reduces to 

* (69) 
dH - H . d U + - - - .  . . dM --- 

h . cosh g P 
BQ 

and it has been seen (Section 4) that h . cosh g is approximately equal 

to  the smaller of the two electrode-valencies. 
Similarly, writing U" for (U - u'), and A' sech and A' tanh for 

the analogous positive differences, due regard being paid to the fact 
that u and u' have opposite signs, we derive the following equation 
for the error of a titration by Method I11 : 

8. 

(70) 
du' du  

---A- 

t 7 f ; [ E h + m h  *' sech I -A'tanh 
d M  A sech 

Atanh ' * 

which is the generalised form of equation (37) of Part 11. 

are large, equation (70) reduces to 
Under optimum conditions, when U - 2 g and both u and u' 

' (71) . . . .  dill adu' - Pdu 
H X h g "  a+p 

P. 

showing that (under these conditions) equal and opposite errors in 
u and ZL' will have the same effect as a single error of the same 
magnitude as either in u in Method 11. The precision of Method 11, 
however, depends also on the correctness of the value assigned to 
H .  Thus from equation (69), - aM/aH would be approximately 
equal to either unity or a/p  according as a is greater or less than 
8, i .e. ,  it would not be greater than unity and might be much less. 
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Of course, Method 11, like Method I, can be applied to the second 
half of the curve if this is available. For this case equation (68) 
would be modified in an obvious manner, and instead of equation 
(69) we should have 

showing that the maximal sensitivity is the same, but aM/aH is 
now (approximately) equal to either unity or p/a. 

Section 10. An Alternative Geometrical Form of Method I .  
The Straight-line Method.-If, as in Section 7, E, represents the 

value of the measured potential when " corrected '' in the manner 
proper to any stage before the equivalence region, then equation 
(31) is equivalent to E, = constant + RT/aF.  log M .  The (un- 
known) constant may be written in the form - RT/ccF. log k,  and 
E, in the substituted form RT/aF.  log y, whereupon the equation 
reduces to  Jcy = M = M ,  - ( M ,  - M ) ,  where y is equal to  

If, then, the corrected potential a t  each stage is plotted on a 
suitable exponential scale, against the number of C.C. of reagent 
present, the successive points will lie on a straight line, which cuts 
the axis a t  a point indicating the result of the titration. Thus 
two points or stages suffice to determine the result (the more 
accurately if they are well separated), but also, owing to the ex- 
ponential scale, it will be found that the determination becomes very 
much more certain as the final measurement more nearly approaches 
the equivalence point, provided always that i t  do not fall within the 
equivalence region. All this corresponds exactly with the conditions 
of precision in the ordinary or algebraic form of  the method. 

The geometrical form, however, provides a useful general method 
for investigating new or uncertain systems, since if a number of 
points are plotted (instead of merely two) their adherence to a 
straight line is a strong indication, amounting almost to conclusive 
proof, that equilibrium conditions are being realised. 

A suitably graduated scale is easily constructed. The distances 
being proportional to ex, the graduations are placed a t  convenient 
intervals of ( R T / a F ) x  [or, for 17", (25/a)x] and numbered con- 
secutively in millivolts, commencing with any convenient number. 
The test and the certainty of the result can be improved if the second 
half of the titration curve is available, for, corresponding to this, a 
second straight line should be obtainable, passing through the same 
end-point, the equation being k'y' = ( M ,  - M )  - M,, where 

e(aplR TI&. 

y ' = e-(f iF/R TIEb. 
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Section 11. Importance of the Xymmetrical Case. 
Application in Acidimetry and Alkalimetry .-It will be noticed 

that, even in the symmetrical case where a = p, the titration-curve 
equation and the methods dependent on it are now much more 
general in application than those obtained in Part 11, since the latter 
took no account of subsidiary reactants and products. For example, 
with the new equation, and the general form of subsidiary-conditions 
correction described in Section 7, the following important cases can 
be dealt with in a simple manner. 

Case (1). In  the titration of a weak base (such as ammonia) against 
a strong acid, the former being the added substance, the equation 
for the analytical reaction is properly written 

(I< being ca. 5 x 10-10, i.e., lO-14/2 x 10-5 or K , / K b )  and if a hydro- 
gen electrode or its equivalent is used as indicator electrode, the 
alternative electrode reactions are 

H'+NH,=NH,' . . . . . ('73) 

(74) 
0 + H' = +H2 

- @ + N H , = N H ~ - - f H , )  * ' * 

The principal reactants are, in effect, hydrogen ion and the base, 
the amount of hydroxyl ion present being relatively quite negligible 
until far beyond the equivalence region, unless excessively dilute 
solutions are being used. 

Case (2). Exactly the same equations are applicable to  the 
titration of a strong base against a strong acid in the presence of an 
appreciable amount of a salt of a weak base, for in that case, owing 
to the weakness of the base, the addition of hydroxyl ions (i.e.,  the 
strong base) is exactly the same in effect as adding an equivalent 
quantity of the weak base and, a t  the same time, withdrawing an 
equivalent quantity of the positive ion of its salt, thus 

The additional molecule of water makes no difference, while the 
withdrawal of the positive ion only affects the form of the subsidinry- 
conclitioiis correction. 

Case (3). The titration of a salt of a weak acid against a strong acid 
is really entirely analogous to Case (l), the negative ion of the salt 
behaving essentially like the weak base. For example, with borax 
(which in solution is essentially NaH,BO, mixed with an equimolar 
quantity of free boric acid) the analytical reaction is 

( K  being ca. 

OH'=NH3+H20-"B,' . . . (75)  

H'+ H2B03' = H3B03 . . . , (76) 
and' the electrode reactions are 

1 . . (77) 0 + H = 4H2 
- 0 + H2B03' = H,BO, - 3H2 

3 c 3  
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The principal reactants are hydrogen ion and the dihydrogen-borate 
ion, and it is only an incidental matter affecting the form of the 
subsidiary-conditions correction that, in this particular case, an 
equivalent amount of free boric acid accompanies the added 
substance. 

Case 4. From the same analogy, it follows that the equations of 
Case (3) are applicable to the titration of a strong base against a 
strong acid in the presence of an appreciable amount of a weak acid. . 

The addition of the hydroxyl ion is exactly the same in effect as 
adding an equivalent quantity of the negative ion of the weak acid, 
and at the same time withdrawing an equivalent quantity of the 
weak acid itself : 

OH’= H2B03’ + H20 - H3BO3 . . . (78) 

and the latter withdrawal merely modifies the subsidiary-conditions 
correction. 

Finally, four cases analogous to the above are obtained on inter- 
changing the words “ acid ” and “ base,” making obvious equivalent 
alterations with regard to the ions, and adopting as indicator 
electrode either the hydrogen electrode or any other which behaves 
in alkaline solution as a “ hydroxyl electrode.” Treated in this 
manner, the eight cases are seen to be essentially one and the same, 
and the equations of this section, taken in conjunction with the 
preceding general theory, show how these common titrations of 
acidimetry and alkalimetry may be made to  yield the highest 
possible precision. 

Summay.  
It is shown that both the titration-curve equation and the new 

methods of titration given in two previous papers can be fully 
generalised, i.e., made applicable to a system involving both 
analytical and electrode reactions of the most general type. 

The characteristic forms of the curvesrepresented by thegeneralised 
equation, and of the derived curves, are indicated with the aid of 
diagrams, and 8ome concrete examples cited. The more important 
mathematical properties of the curves are exhibited, the generalised 
methods of titration deduced, and their precision formulated, in 
terms of certain bin-exponential functions, regarded as generalised 
hyperbolic functions. Methods I and 111, however, still involve 
only the single function, f, tabulated in the first of this series of 
papers. 

A routine procedure previously indicated is now more fully 
developed, whereby, in connexion with all thiee methods, accurate 
allowance is made for unavoidable variations in the subsidiary 
conditions, i.e., the volume of the solution and the concentrations 
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of subsidiary reactants and products. A simple mode of correction 
is also provided for any unavoidable fluctuations of temperature. 

In Section 10, a geometrical form of Method I is outlined (a 
" straight-line method "), suitable for the investigation of new and 
uncertain systems, since it provides a stringent test as to the attain- 
ment of equilibrium in the system. 

Finally, the advantage of the more general form of the titration- 
curve equation, even in the symmetrical case, is pointed out and 
exemplified by its application to  the titrations of acidimetry and 
alkalimetry involving weak acids, weak bases, and their salts. 

I have pleasure in thanking Messrs. F. H. Brooks and A. H. 
Richards for assistance in the construction of the diagrams which 
accompany this paper. 
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